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Markov-Chain Monte Carlo



Monte Carlo

Monte Carlo method applied to approximating the value of . Apated from Wikipedia.π
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Monte Carlo

Monte Carlo in Monaco. Apated from Wikipedia.
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Philosophy

From the book:

play with chances, either large (in terms of convergence probability) or small (in terms of
winning a big prize at the Casino) chances.

From Wikipedia:

use randomness to solve problems that might be deterministic in principle.

My additional opinion:

learn through generalization.

Difference of “Monte Carlo” in statistics and computer science:

Monte Carlo methods: target at correct (consistent) output asymptotically.

Monte Carlo algorithms: target at incorrect output with small (non-zero) probability.

·

·
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General method

From my STAT3005 Q&A:

For approximation of :

1. Generate data from some probabilistic models.

2. Perform a deterministic computation on the data.

3. Aggregate the results.

classical Monte Carlo (MC): independent random numbers.

Markov-Chain Monte Carlo (MCMC): a Markov chain, i.e., dependent random numbers.

·

·

usually problem specific so we know what to compute in advance.·

π

1. Generate .

2. If , then set . Otherwise, set .

3. Repeat step 1 to 2 for  times. The approximated value of  is .

, ∼ Unif(0, 1)U1 U2

≤ 1+U 2
1 U 2

2

− −−−−−−√ = 1Vi = 0Vi

check whether the point falls inside 1/4 of a unit circle.·

n π 4n−1 ∑n
i=1 Vi
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https://hemanlmf.github.io/teaching/stat3005/2020F/QA-MC-Experiment.html
https://hemanlmf.github.io/teaching/stat3005/2020F/QA-MC-Experiment.html


Difficulties

Suppose we wish to evaluate , where . Then

where , i.e.,  is a random variable whose pdf is . Under suitable conditions, the SLLN gives us

where . Some notable difficulties:

∫ f(x) dx f(x) = g(x)p(x)

f(x) dx = g(x)p(x) dx = E{g(X)},∫ ∞

−∞
∫ ∞

−∞

X ∼ p X p

:= g( ) f(x) dx,ḡn

1
n

∑
i=1

n

Xi →
a.s. ∫ ∞

−∞

, … , pX1 Xn ∼iid

1. How to simulate random replicates of ?

2. When to stop the simulation (at )?

3. How to improve the statistical properties of ?

X ∼ p

inverse transform, rejection sampling, Metropolis–Hastings, Gibbs, …·

n = n∗

ḡn

antithetic variable, stratified sampling, control variate, importance sampling, …·

7/27



Algorithms



Motivation

The book chose to introduce the Gibbs sampler first

I do not agree

Why MCMC instead of classical MC?

because it is “simpler and more intuitive for a beginner”.·

Gibbs is more like a divide-and-conquer strategy.

It does not answer the fundamental question, i.e., how to simulate ?

·

· X ∼ p

Classical MC only applies to a restrictive range of distributions.

Inverse transform requires:

Rejection sampling requires:

·

·

finding cdf (difficult in Bayesian as only unnormalized posterior is known).

finding inverse of cdf (difficult in any settings).

-

-

·

optimizing the upper bound of importance ratio (not always analytical).

choosing a good proposal (slow for a bad proposal).

-

-

9/27



Inverse transform

Input: target pdf .

Flow:

Output: independent data .

· p(⋅)

·
1. Find the cdf .

2. Find the inverse .

3. Generate .

4. Set .

5. Repeat step 3 to 4 for .

P(⋅)

(⋅)P −1

∼ Unif(0, 1)Ui

= ( )Xi P −1 Ui

i = 1, … , n

· {Xi}n
i=1
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Rejection sampling

Input:

Flow:

Output: independent data .

·
1. : target pdf.

2. : proposed pdf.

p(⋅)

q(⋅)

·
1. Find .

2. Generate .

3. Generate .

4. If , set . Otherwise, restart from 2.

5. Repeat step 2 to 4 for .

b = {p(x)/q(x)}maxx

∼ q(⋅)Yi

∼ Unif(0, 1)Ui

≤ p( )/{b ⋅ q( )}Ui Yi Yi =Xi Yi

i = 1, … , n

· {Xi}n
i=1
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Metropolis–Hastings (MH)

Input:

Flow:

Output: Markov chain .

·
1. : unnormalized target pdf.

2. : proposed pdf.

3. : initialization pdf.

(⋅)pu

q(⋅ ∣ ⋅)

(⋅)pinit

·
1. Generate .

2. Generate .

3. Generate .

4. Compute the acceptance probability:

5. Set .

6. Repeat step 2 to 5 for .

∼ (⋅)X0 pinit

∼ q(⋅ ∣ )Yi Xi−1

∼ Unif(0, 1)Ui

= min { , 1} .ai

( )q( ∣ )pu Yi Xi−1 Yi

( )q( ∣ )pu Xi−1 Yi Xi−1

= 1( ≤ ) + 1( > )Xi Yi Ui ai Xi−1 Ui ai

i = 1, … , n

· {Xi}n
i=1
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Multivariate distribution

What if  is a -dimensional pdf?p(⋅) d

 is normal: Cholesky decomposition/spectral decomposition.

 is not normal: no general methods.

Gibbs provides a general framework for multivariate sampling.

Let’s review some facts before we proceed.

· X

· X

rejection rate can be high for rejection sampling and MH.-

·

essentially, Gibbs breaks down the problem into at most  univariate problems.

univariate simulation is well-studied.

- d

-

·

the joint is fully recoverable from the conditionals.

except special cases such as independence, the joint is not recoverable from the marginals.

Gauss–Seidel algorithm shares similar ideas as the Gibbs sampler.

-

-

-
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Recover joint from conditionals

Denote the joint, marginal and conditional pdf’s of X and Y by , , ,  and

.

Note that

Therefore, we have

· p(x, y) (x)pX (y)pY (x ∣ y)pX∣Y

(y ∣ x)pY ∣X

·

p(x, y) = (x ∣ y) (y) = (y ∣ x) (x) ⟹ = .pX∣Y pY pY ∣X pX

(y)pY

(x)pX

(y ∣ x)pY ∣X

(x ∣ y)pX∣Y

·

p(x, y) = (y ∣ x) (x)pY ∣X pX

=
(y ∣ x) (x)pY ∣X pX

(y) dy∫ ∞
−∞ pY

= (y ∣ x)pY ∣X {  dy}∫ ∞

−∞

(y)pY

(x)pX

−1

= (y ∣ x) .pY ∣X {  dy}∫ ∞

−∞

(y ∣ x)pY ∣X

(x ∣ y)pX∣Y

−1
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Gauss–Seidel

Having something done component-wisely and iteratively is not new.

Suppose we want to solve a large system of equations expressed as

Let  be the -th component of . The Gauss–Seidel algorithm is

Under mild conditions,  converges globally regardless of .

·

·

L( , … , ) = 0.x(1) x(d)

· Li i L

1. Initialize .

2. Solve  from .

3. Similarly, solve  from .

4. Repeat step 3 to solve  for .

5. Repeat step 2 to 4 for .

= ( , … ,x0 x
(1)
0 x

(d)
0 )⊺

x
(1)
i ( , , … , ) = 0L1 x(1) x

(2)
i−1 x

(d)
i−1

x
(2)
i ( , , … , ) = 0L2 x

(1)
i x(2) x

(d)
i−1

x
(k)
i k = 3, … , d

i = 1, … , n

· xn x0
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Gibbs sampler

Adapted from Keith’s STAT4010 notes.

Input:

Flow:

Output: Markov chain .

·

·
1. : conditional pdf for .

2. : initialization pdf.

(⋅ ∣ )p(k∣−k) x(−k) k = 1, … , d

(⋅)pinit

·
1. Generate .

2. Set .

3. Generate .

4. Set .

5. Repeat step 3 to 4 for .

6. Repeat step 2 to 5 for .

Y ∼ (⋅)pinit

= YXi

∼ (⋅ ∣ )Y (k) p(k∣−k) X
(−k)
i

=X
(k)
i Y (k)

k = 1, … , d

i = 1, … , n

· {Xi}n
i=1
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https://sites.google.com/site/kwchankeith/teaching/s4010/s4010-2021Spring
https://sites.google.com/site/kwchankeith/teaching/s4010/s4010-2021Spring


Theoretical gurantees

(Theorem 15.1) Suppose that the Markov chain has transition kernel  and stationary distribution  so
that  is -irreducible and aperiodic. Then, for all , the following hold:

(Theorem 15.2) The conditions of Theorem 15.1 hold for the Gibbs sampler provided that  is lower
semicontinuous at zero,  is connnected, and both  and  are locally bounded.

K π
K π x ∈ D = {x : π(x) > 0}

1.  as .

2. For any real-valued, -integrable function ,

| (x, v) − π(v)|dv → 0∫ ∞
−∞ Kt t → ∞

 is the transition kernel for  given .· (x, ⋅)Kt Xt = xX0

π g

g( ) g(x)π(x) dx.
1
n

∑
t=1

n

Xt →
a.s. ∫ ∞

−∞

F
D (⋅)fX (⋅)fY

 is the cdf of  as a bivariate case is considered in the book.· F f(x, y)
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Convergence



Strategies for Gibbs

Suppose we simulate  with Gibbs. Some possible strategies are:

Which strategy is the best?

X = ( , ,X(1) X(2) X(3))⊺

Direct: sample from , .

Grouping: sample  from  and  from .

Collapsing: omit , and sample  from  and  from 

· p(k∣−k) k = 1, 2, 3
· X(1) p(1∣2,3) ,X(2) X(3) p(2,3∣1)

possible if we can draw  from  and  from .

as known as blocked Gibbs sampler.

- X(2) p(2∣1) X(3) p(3∣1,2)

-

· X(3) X(1) p(1∣2) X(2) p(2∣1)

sampling from  is generally tractable when  is a conjugate prior of ; see Wikipedia.

sensible if the problem of interest only involves the joint of  and .

- p(1∣2) X(3) X(1)

- X(1) X(2)

Traditional investigation: (advanced) theory of Markov chains.

“Elementary” approach: simple functional analysis and inequalities.

·

e.g., Geman and Geman (1984), Nummelin (1984) and Tierney (1991).-

·

e.g., Liu (1994) and Liu et al. (1994, 1995).-
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https://en.wikipedia.org/wiki/Gibbs_sampling#Collapsed_Gibbs_sampler
https://en.wikipedia.org/wiki/Gibbs_sampling#Collapsed_Gibbs_sampler


Notations

Hilbert space considered: .

Inner product: .

Variance: .

Pearson -discrepancy between  and :

· (f) = {g(X) : E{g(X)} = 0 and E{|g(X) } < ∞}L2
0 |2

· ⟨g(X), h(X)⟩ = E{g(X) }h(X)¯ ¯¯̄¯̄¯̄¯̄¯

complex conjugate: ; modulus: .- c̄̄ |c|

· = ⟨g(X), g(X)⟩ = E{|g(X) }∥g(X)∥2 |2

· χ2 p q

(q, p) = { }  dx − 1 = Var { } .d2
p ∫ ∞

−∞

(x)q2

p(x)
q(X)
p(X)

 is nonnegative but not a distance.

 can be shown as a stronger measure of discrepancy than -distance.

 is also a stronger meausre than certain kind of Kullback–Leibler information distance.

- dp

- dp L1

- dp
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Results

Forward operator  (with  as the transition kernel):

Norm of :

Results of Liu et al. (1994):

· F K

Fg(X) = E{g( ) ∣ = X} = g(y)K(X, y) dy.X1 X0 ∫ ∞

−∞

· F

∥F∥ = ∥Fg∥sup
g∈ (f),∥g∥=1L2

0

·

∥ ∥ ≤ ∥ ∥ ≤ ∥ ∥Fcollapse Fgroup Fdirect

smaller , faster convergence.

expected as collapsing and grouping require more manual work.

- ∥F∥

-
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Convergence rate

Let  denote the pdf of . By the Markovian property,

It follows that

By the Cauchy–Schwarz inequality, we have (15.28) in the book:

· pt Xt

{g(X)}Ept

{g(X)}Ep

= g(y)K(x, y) (x) dx dy,∫ ∞

−∞
∫ ∞

−∞
pt−1

= g(y)K(x, y)p(x) dx dy.∫ ∞

−∞
∫ ∞

−∞

·

{g(X)} − {g(X)}Ept
Ep = g(y)K(x, y) { − 1} p(x) dx dy∫ ∞

−∞
∫ ∞

−∞

(x)pt−1

p(x)

= Fg(x) { − 1} p(x) dx.∫ ∞

−∞

(x)pt−1

p(x)

·

{g(X)} − {g(X)} ≤ ∥Fg(X)∥ ( , p) ≤ ∥F∥ ⋅ ∥g(X)∥ ( , p).∣∣Ept
Ep ∣∣ dp pt−1 dp pt−1
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Convergence rate

Note that

Consider . We have  and

If  is finite, we can obtain (from (15.28) in the book; see last page):

·

p(x) dx = ( , p).∫ ∞

−∞
{ − 1}(x)pt−1

p(x)

2

d2
p pt−1

· g(X) = (X)/p(X) − 1pt E{g(X)} = 0

E{g(X } = p(x) dx = ( , p).)2 ∫ ∞

−∞
{ − 1}(x)pt

p(x)

2

d2
p pt

· ( , p)d2
p pt

( , p) ≤ ∥F∥ ( , p),dp pt dp pt−1

which holds for all  as long as .- t ( , p) < ∞d2
p pt
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Convergence rate

Therefore, if , we have for any  that

This suggested that the convergence rate of the Markov chain is closely related to .

However, we cannot simply conclude based on the convergence rate.

· ( , p) < ∞d2
p pt0 t ≥ t0

( , p)dp pt ≤ ∥F∥ ( , p)dp pt−1

≤ ( , p)∥F∥2
dp pt−2

  ⋮
≤ ( , p)∥F∥t−t0 dp pt0

= ,c0∥F∥t

where .- = ( , p)/c0 dp pt0 ∥F∥t0

· ∥F∥

combine with .

collapsing is better than grouping, which, in turn, is better than the direct Gibbs sampler.

- ∥ ∥ ≤ ∥ ∥ ≤ ∥ ∥Fcollapse Fgroup Fdirect

-

·

other factors include computational efficiency and (manual) simplicity.-
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Supplement



Maximum correlation

How to prove the inequality ?∥ ∥ ≤ ∥ ∥ ≤ ∥ ∥Fcollapse Fgroup Fdirect

Relate  to the maximum correlation, which is defined as

A useful alternative expression is given by

We have the relation:

See the book and Liu et al. (1994) for the complete proof.

· ∥F∥

ρ(X, Y ) = Corr{g(X), h(Y )}.sup
g,h:Var{g(X)}<∞,Var{h(Y )}<∞

·

{ρ(X, Y ) = Var[E{g(X) ∣ Y }].}2 sup
g:Var{g(X)}=1

·

∥F∥ = ρ( , ).X0 X1

·
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Monte Carlo EM

Briefly discussed in my STAT4010 tutorial:

1. Expectation–maximization (EM) algorithm
To obtain MLE, we need to optimize the likelihood function, which may not have closed form in some
models. In that case, we may replace the expectation step in the EM algorithm with a MCMC
procedure; see the description here.

2. Stochastic approximation (SA) algorithm
Instead of using MCMC and Riemann sum to approximate an expectation, we can use MCMC to
generate the required random effect in the SA algorithm; see the description here. (Perhaps the most
well-known SA algorithm is the stochastic gradient descent)

3. Machine learning
MC or MCMC methods can be used to enhance or even construct machine learning algorithms. For
example, the algorithm behind AlphaGo includes Monte Carlo tree search.
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https://hemanlmf.github.io/teaching/stat4010/2021S/Karte-9.html
https://hemanlmf.github.io/teaching/stat4010/2021S/Karte-9.html
https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm#Description
https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm#Description
https://en.wikipedia.org/wiki/Stochastic_approximation#Application_in_stochastic_optimization
https://en.wikipedia.org/wiki/Stochastic_approximation#Application_in_stochastic_optimization
https://en.wikipedia.org/wiki/Monte_Carlo_tree_search
https://en.wikipedia.org/wiki/Monte_Carlo_tree_search

